Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Психология » Статьи научные и разные. Сборник - Алексей Патрашов

Статьи научные и разные. Сборник - Алексей Патрашов

Читать онлайн Статьи научные и разные. Сборник - Алексей Патрашов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5
Перейти на страницу:

Использовать аналоговые модели очень удобно для понимания происходящих событий и дальнейшего их прогнозирования. Хорошо известно, что дифференциальные уравнения малых колебаний маятника, груза на пружине, электрического тока в RLC цепи, жидкости в U-образной трубке и многих других явлений выглядят одинаково. Соответственно и решения этих уравнений тоже выглядят одинаково, поэтому решив одну задачу мы можем считать решёнными и другие с аналогичными условиями, но с иной физической природой.

Здесь мы подходим к ещё одному важному понятию, которое нам понадобится для того, чтобы правильно суметь определить знак события, а именно к понятию удачного или неудачного события. Лучше всего знак и величину события получится определять через разность его величины и её математического ожидания. Так мы сможем гораздо лучше определить степень везения или невезения при рассмотрении нескольких однородных событий через их сумму или среднее значение.

Ещё одним очень важным понятием является то, что удача не является не неудачей. То есть играть в лотерею и не выиграть не является неудачей, а скорее закономерностью, поскольку выиграть в лотерею можно чрезвычайно редко. Точно так же не споткнуться на ровном месте не является удачей, а больше является закономерностью потому, что спотыкаются на ровном месте редко.

Также мы должны разобраться в последовательностях событий. Рассмотрим два простых примера. В одном случае пассажир споткнулся, упал, пока поднимался потерял время и опоздал на свой автобус, а в итоге опоздал на самолёт, который в полёте сломался и разбился вместе со всеми пассажирами. В другом случае пассажир так же опоздал на самолёт, который подорвали террористы, которые собирались подорвать именно этот самолёт.

В обоих случаях наблюдается везение после невезения, но в первом случае события не связанные потому, что самолёт мог и не сломаться, а во втором случае связанные потому, что террористы обязательно подорвали бы именно этот самолёт. Так что в первом случае у нас никакого везения нет, а наоборот есть невезение. Падение самолёта было совершенно случайным и окажись опоздавший пассажир на борту, самолёт мог бы и не упасть. А во втором случае катастрофа была бы неизбежна, но пассажир опоздал и ему повезло.

С точки зрения теории вероятностей в первом случае вероятность неудачи была очень мала, а во втором очень велика, поэтому первый случай как предсказанный мы рассматривать не можем, в вот второй как раз почти полностью предсказан. Так что рассматривать два последовательных события как одну цепочку мы можем только в том случае, когда вероятность наступления второго события высока и не зависит от вероятности первого события.

Для лучшего понимания количественных явлений мы напишем несколько схожую с формулой Байеса формулу влияния собственной удачи B участника опыта на вероятность A его исхода.

Для примера несколько рассчитанных случаев покажем в виде таблицы.

Таблица 1. Успех исхода события P (A/B) в % в зависимости от успешности участника.

Из таблицы видно, что безнадёжное дело неудачник сильно не испортит, а успешное дело счастливчик сильно не улучшит. Само собой надо понимать, что всё сказанное касается в первую очередь крупных событий, то есть приняв за удачное событие выпадение одной стороны монеты, а за неудачное другой, получить перераспределение частоты выпадений в зависимости от удачливости бросающего не получится. Действительно, ведь в падении монеты экспериментатор никак не участвует, а только пытается предсказать результат. Зато вполне возможен вариант выигрыша или проигрыша крупной суммы денег при той же игре в угадывание стороны монеты.

Определение влияния удачи легко получить через расширение классического определение вероятности. Если событие A из N повторов ожидается n раз из расчёта равновозможных исходов, а под влиянием удачи происходит не n, а m раз, то вероятность события A исходя из влияния удачи можно пересчитать как произведение. При этом предполагается, что N, n и m стремятся к бесконечности, поэтому вероятность определяется как предел.

Здесь мы воспользовались условиями, что 0 <m, n и m, n <N и на невозможные или достоверные события удача не влияет. На этом же основании мы смогли перейти к удобному выражению влияния удачи через экспоненту. При нулевой удаче, показатель экспоненты оказывается нулевым и определение вероятности снова становится классическим.

Если вместо множества событий имеется только набор уже известных вероятностей каждого события, то применить классическое определение вероятности напрямую не получится. Вместо него можно по аналогии применить пересчёт каждой вероятности по очень похожей на формулу Байеса формуле, которая получается при переходе к определению вероятности через её классическое определение, но только через математическое ожидание числа каждого из всех возможных событий из их общего числа N и обратно.

Возникает закономерный вопрос, а что же делать и как бороться за удачу с неудачей? На этот вопрос лучше начинать с ответа, чего делать не надо. В первую очередь не надо повторять одно и то же сразу после каждого провала. Каждая следующая неудача увеличивает массу накопившихся неудач и притягивает очередную новую неудачу. Все опытные игроки в азартные игры знают, что в случае начала невезения надо сразу выходить из игры, не дожидаясь полного проигрыша.

Во вторую очередь надо помнить, что время и место влияют на удачу, а поэтому не надо затевать рискованных мероприятий сразу после крупного провала или в местах многочисленных неудач или несчастий. Недавняя неудача притянет к себе новую и масса неудач будет увеличиваться и увеличиваться, пока для удачи возможности произойти не останется вообще. Точно также все игроки в карты знают, что нельзя садиться играть в паре с неудачником или после недавнего крупного проигрыша, иначе неудача прилипнет и надолго.

Возникает не менее закономерный вопрос об исключении влияния собственного выбора. Действительно, если удача или неудача преследует именно выбор экспериментатора, то было бы неплохо этот выбор исключить вообще. Широко известно использование методов Монте-Карло для решения разнообразных задач. Точно так же мы можем использовать метод Монте-Карло для принятия решений. В качестве простого примера мы рассмотрим применение подбрасывания монеты для упорядочивания списка поставленных задач методом деления группы задач пополам для получения устойчивой к влиянию собственной неудачи нужной последовательности.

Сначала мы расположим все намеченные к выполнению задачи в совершенно произвольном порядке. Так можно поступить потому. что всё равно выбор из списка будет производиться случайным образом. Если у нас есть всего две задачи, то остаётся только назначить каждой задаче соответствующую сторону монеты и подбросив монету получить нужную первую задачу. Гораздо сложнее, когда количество задач окажется нечётное и не кратное степени двойки.

В таком случае мы дополним список задач пустыми задачами до ближайшего числа целой положительной степени двойки. Например одиннадцать задач мы дополним до шестнадцати пятью пустыми задачами, расположив их в совершенно произвольных местах. Полученные шестнадцать задач мы разделим на две группы по восемь задач и сделаем выбор нужной группы подбрасыванием монеты. При этом выбор стороны монеты неважен потому, что для выпадения сторон монеты действует схема Бернулли, но для исключения сомнений мы всё равно зададимся правилом, что одна сторона соответствует, например, группе задач слева и будем следовать этому правилу.

Выбранную группу мы будем так же делить пополам до тех пор, пока не останется выбранной только одна задача. Если в оставшейся группе будут содержатся только пустые задачи, то выбор можно уже прекратить, но мы преднамеренно доведём опыт до конца, чтобы не нарушать его чистоту. Если в итоге мы получим пустую задачу, то мы начнём свой выбор заново с самого начала с шестнадцати задач, пока не выпадет одна из не пустых задач. После этого мы снова дополним список задач одной пустой задачей до шестнадцати и начнём сначала.

Дополнять каждый раз количество задач до их первоначального количества не требуется после того, как оно уменьшится до ближайшего меньшего числа двойки в целой степени. Так в нашем случае после того, как останется только восемь задач, мы будем дальше делать выбор уже из восьми, а потом четырёх и так далее. Но оставшиеся после вычитания одной задачи из восьми семь задач мы всё равно будем дополнять до восьми, а три до четырёх итак далее.

1 2 3 4 5
Перейти на страницу:
На этой странице вы можете бесплатно скачать Статьи научные и разные. Сборник - Алексей Патрашов торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...